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Abstract. We introduce the notion of uniform number of a graph.
The uniform number of a connected graph G is the least cardinality
of a nonempty subset M of the vertex set of G for which the function
fM : Mc → P(X) − {∅} defined as fM (x) = {D(x, y) : y ∈ M} is a
constant function, where D(x, y) is the detour distance between x and y

in G and P(X) is power set of X = {D(xi, xj) : xi ̸= xj}. We obtain
some basic results and compute the newly introduced graph parameter
for some specific graphs.
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1. Introduction

All the graphs unless otherwise specified are finite, undirected, connected
and simple. For standard graph theory terminology and notations not defined
here, we refer Buckley and Harary [3]. We also refer [7] and [9] for the notions
of theory of algorithms and their complexity.

Let G = (V,E) be a graph with vertex set V (G) and edge set E(G). For
an arbitrary pair of vertices x, y ∈ V (G), the distance d(x, y) is the length
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of a shortest path and the detour distance D(x, y) is the length of a longest
path between x and y in G. The study on detour distances was initiated by
Chartrand et al. [5]. The detour eccentricity eD(G) of a vertex x is the detour
distance from x to a vertex farthest from x. The detour radius radD(G) of a
connected graph G is the minimum detour eccentricity among the vertices of G
and the detour diameter diamD(G) is the maximum detour eccentricity among
the vertices of G.

Before we proceed any further, we recall few facts about detour distances.
Theorem 1.1. [5]

(1) For any graph G, D(x, y) = 1 if and only if xy is a bridge in G.

(2) For any graph G, d(x, y) = D(x, y) for every pair of vertices x and y

of G if and only if G is a tree.

As with distance, detour distance is also known to be a metric on the vertex
set of any connected graph [6]. Finding the longest path between two vertices
of a graph is known to be NP -complete [7]. However, when we consider the
longest path problem (LPP) which involves finding a path of maximum length
in a given graph where the length of a path may either be measured by its
number of edges, or for weighted graphs by the sum of the weights of its edges,
is NP -hard [9].

The notion of detour distance appears in various real world problems. Wong
et al. [23] mentioned LPP on graphs in the context of information retrieval on
peer-to-peer networks where the weights are associated with vertices. LPP
has also been addressed in [18] for evaluating the worst-case packet delay
of Switched Ethernet. LPP also appears in the domain of high-performance
printed circuit board design in which one needs to find the longest path be-
tween two specified vertices on a rectangle grid routing [22]. In [17], the authors
described LPP in the context of multi-robot patrolling.

In view of the above mentioned real-life applications and the algorithmic
complexity of LPP, the notion of uniform sets of graph and uniform number
of graph are introduced and investigated in this article. Our investigation of
uniform number of a graph is also motivated from the work of Slater where
he introduced the notion of locating sets [20] which are also referred as metric
dimension [11] or resolving sets [4] in the current literature, the notion of dis-
tinct distance sets [21] and homometric sets [2] in a graph. An analogous but
complementary notion of detour distance pattern distinguishing set of G was
introduced and explored in [1].

2. Uniform Sets and Uniform Number of a Graph

For any connected graph G, let M c be the complement of M ⊆ V (G), P(X)

be the powerset of the set X = {D(xi, xj) : xi ̸= xj} and Y (X) = P(X)−{∅}.
For a nonempty subset M ⊆ V (G), we define a function fM : M c → Y (X)
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as fM (x) = {D(x, y) : y ∈ M}. We call the assignment fM (x) as the detour
pattern of x with respect to M. A set M is said to be a uniform detour pattern
set of the graph G if fM is a constant function. For any w ∈ V (G) the set
{w}c is trivially a uniform detour pattern set of G. The trivial uniform detour
pattern sets of G being analogous to trivial solutions, would be excluded from
our discussion in this article. Henceforth a non-trivial uniform detour pattern
set of a graph would be referred as a uniform set.

To begin with, we examine the behavior of a pendant vertex with respect to
the uniform sets of a graph.

Proposition 2.1. Let G be a graph of order n ≥ 3 and v be a pendant vertex
of G, then the set {v} cannot be a uniform set of G.

Proof. Let v be a pendant vertex in G and M = {v}. We want to show that M
is not a uniform set of G. Since n = |V (G)| ≥ 3, there exist at least one pair
of vertices u,w ∈ V (G) such that vw,wu ∈ E(G). The edge vw being a bridge
in G, D(v, w) = 1 and therefore

fM (w) = {D(w, v)} = {1}, and
fM (u) = {D(u, v)} = {D(u,w) +D(w, v)} = {D(u,w) + 1}.

Detour distance being a metric, fM (w) ̸= fM (u) in G. Hence the proof. □

Let S be the set of all pendant vertices of a graph G. The above result simply
asserts that: if S′ ⊆ S and |S′| = 1, then S′ cannot be a uniform set of G. This
raises a natural question: Whether or not any proper subset S′ of S forms a
uniform set of G? The foregoing question is answered by our next result.

Proposition 2.2. Let S be the set of all pendant vertices of a graph G and
S′ ⊂ S, then S′ alone cannot be a uniform set of G.

Proof. Let S = {ui : 1 ≤ i ≤ n0 < n} be the set of all pendant vertices of a
graph G of order n. We want to show that any proper subset S′ of S cannot
be a uniform set of G.

Let W = {wj : 1 ≤ j ≤ k} be the set of vertices with degG(wj) ≥ 2 which
partitions the set S into k-classes Sj = {vji : 1 ≤ i ≤ nj}.

Case 1: If S′ ∩Sj = S′ for some j, say j = 1.

Then S′ = {v1i : 1 ≤ i ≤ n1}, and for all 2 ≤ j ≤ k we have

fS′(w1) = {D(w1, v1i)} = {1}, and
fS′(vji) = {D(vji, v1i)} = {D(vji, w1) +D(w1, v1i)} = {D(vji, w1) + 1}.

Detour distance being a metric it follows that fS′(w1) ̸= fS′(vji) and hence S′

is not a uniform set of G.
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Case 2: If S′ ∩Sj = ∅ for at least one j, say j = 1. Let S′ =

k∪
2

Sj . Then

for j ̸= 1 and w1 ∈ W we have

fS′(w1) =

k∪
j=2

{D(w1, vji)} =

k∪
j=2

{D(w1, wj)+D(wj , vji)} =

k∪
j=2

{D(w1+wj)+1}.

Similarly, for j ̸= 1 and each v1i ∈ S1

fS′(v1i) =

k∪
j=2

{D(v1i, vji)} =

k∪
j=2

{D(v1i, wk) +D(wk, wj) +D(wj , vji)}

=

k∪
j=2

{1 +D(wk, wj) + 1} =

k∪
j=2

{D(w1, wj) + 2}.

Clearly, fS′(wk) ̸= fS′(vki) and S′ is not a uniform set of G.

Case 3: If S′ ∩Sj ̸= ∅ for all j, then S′ ⊂
k∪

j=1

Sj = S. Since S′ ⊂ S, there

exist at least one pair (j, i), say (1, 1) for which v11 /∈ S′. For 2 ≤ i ≤ n1, and
w1 ∈ W and v11 ∈ S1, we have

fS′(w1) =

k∪
j=2

{D(w1, vji)}
∪

{D(w1, v1i)}

=

k∪
j=2

{D(w1, wj) +D(wj , vji)}
∪

{1}

=

k∪
j=2

{D(w1, wj) + 1}
∪

{1}.

Again, 2 ≤ i ≤ n1 and v11 ∈ S1, we have

fS′(v11) =

k∪
j=2

{D(v11, vji)}
∪

{D(v11, v1i)}

=

k∪
j=2

{D(v11, w1) +D(w1, wj) +D(wj , vji)}
∪

{2}

=

k∪
j=2

{1 +D(w1, wj) + 1}
∪

{2} =

k∪
j=2

{D(w1, wj) + 2}
∪

{2}.

Clearly, fS′(w1) ̸= fS′(v11). S
′ yet again is not a uniform set of G.

Hence in all the possible cases S′ is not a uniform set of G. □

In view of Proposition 2.1 and 2.2 it is evident that any proper subset of S
cannot be a uniform set of G. Hence it would be meaningful to explore, whether
or not the set of all pendant vertices S of a graph G forms a uniform set of
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G? And, in the event of S alone being a uniform set of G, what is the least
cardinality of S? Also, it would be meaningful to characterize the graphs for
which the set of all pendant vertices is a uniform set.

The following result not only determines the least cardinality of the set S

for which it is a uniform set, but it also characterizes the class of graphs for
which it is a uniform set.

Proposition 2.3. If G is a graph of order n ≥ 4 with exactly two pendant
vertices, say u, v, then the set {u, v} is a uniform set of G if and only if G ∼= P4.

Proof. Let G ∼= P4 and {v1, v2, v3, v4} be the vertices of P4 taken in a sequential
order. Let M = {v1, v4}, then M is a uniform set of P4 as fM (v2) = {1, 2} =

fM (v3).

Conversely, let G be a graph of order n ≥ 4 with exactly two pendant
vertices, say u, v such that M = {u, v} is a uniform set of G. We shall show
G ∼= P4.

If the pendant vertices of G are both adjacent to a vertex w in G, then

fM (w) = {D(w, u), D(w, v)} = {1}.

Since |V (G)| ≥ 4, there exists at least one vertex x different from u, v, w in G.

For such a vertex x ∈ V (G), we have

fM (x) = {D(x, u), D(x, v)} = {D(x,w) +D(w, u), D(x,w) +D(w, v)}
= {D(x,w) + 1, D(x,w) + 1} = {D(x,w) + 1}.

Since x ̸= w ∈ V (G), D(w, x) > 1. Hence fM (w) ̸= fM (x), a contradiction to
the fact that M is a uniform set of G. It follows that uw, vw /∈ E(G).

Let there exist a pair of vertices, say u′, v′ ∈ V (G) such that u′u, v′v ∈ E(G).

To show that G is a path, it is enough to show that the degree of every vertex
different from u, v in G is 2. Assuming to the contrary, let deg(u′) ≥ 3. Then
there exists a y ∈ V (G) such that u′y ∈ E(G). For such y, u′ ∈ V (G), we have

fM (u′) = {D(u′, u), D(u′, v)} = {1, D(u′, v′) +D(v′, v)} = {1, 1 +D(u′, v′)}

and

fM (y) = {D(y, u), D(y, v)} = {D(y, u′) +D(u′, u), D(y, v′) +D(v′, v)}
= {1 +D(y, u′), 1 +D(y, v′)}.

Since D(u′, y), D(v′, y) ≥ 1, fM (u′) ̸= fM (y). Again a contradiction to the fact
that M is a uniform set of G, which implies that deg(u′) < 3. As u′ ̸= u, v in
G we have 1 < deg(u′) < 3. With similar arguments, degG(v′) < 3. Therefore
deg(u′) = 2 = deg(v′).

Finally, to show that G ∼= P4 it is enough to show that u′v′ ∈ E(G). Suppose
not, then there exists at least one z ̸= v′ ∈ V (G) such that u′z ∈ E(G). For
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such z ∈ V (G), we have

fM (z) = {D(z, u), D(z, y)} = {D(z, u′) +D(u′, u), D(z, v′) +D(v′, v)}
= {1 +D(z, u′), 1 +D(z, v′)}.

Also,

fM (u′) = {1, 1 +D(u′, v′)}.

Since D(u′, z), D(v′, z) ≥ 1, fM (u′) ̸= fM (z). Yet another contradiction to
the fact that M is a uniform set of G, consequently u′v′ ∈ E(G). Hence,
G ∼= P4. □

Remark 2.4. The center of P4 is also a uniform set.

Uniform sets of the following graphs are given below.

Figure 1

For the graph G1 in Fig. 1, M1 = {1, 2, 3} and M2 = {1, 4, 5, 6, 7} are
two uniform sets of different cardinalities. Next, for the graph G2 in Fig. 1,
M3 = {1, 2, 3} and M4 = {4, 5, 6} are two uniform set of same cardinality.
Finally, in the Fig. 1, M5 = {2, 3, 4} is the only uniform set of the path P5.

One can easily verify that for the uniform sets, exhibited for the graphs G1, G2

and P5 in Fig. 1, none of their proper subsets are uniform sets of the respective
graphs.

This observation prompts us to define minimal uniform and minimum uni-
form sets of G. A uniform set M of G is minimal if it contains no proper uniform
set. And, a uniform set M of G is minimum if it is of the least cardinality. The
cardinality of the minimum uniform set of G will be referred as the uniform
number of G, denoted as ς(G).

As an immediate consequence of the definition of ς(G), we have the following
bounds for ς(G).

Proposition 2.5. For any connected graph G of order n, 1 ≤ ς(G) ≤ n− 2.

The following result is analogous to classical theorem on domination in lo-
cally finite graphs due to Ore [15].
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Proposition 2.6. For any graph G, every uniform set contains a minimal
one.

The following definition due to Lee, Schmeichel and Shee [14] will be useful
for the remainder of this paper. For any two graphs G and H, let u and v be
fixed vertices of G and H, respectively. Then the vertex amalgamation of G

and H is the graph obtained from G and H by identifying G and H at the
vertices u and v. The next result is analogous to the results due to Buckley and
Chartrand respectively.

Theorem 2.7. For every graph G, V (G) is a uniform set of some graph.

Proof. Let V = {ui : 1 ≤ i ≤ n} be the vertex set of G and, u1 and un be
any pair of antipodal vertices of G. For m ≥ 2, let H be a graph obtained by
amalgamating the center of a star K1,m either with u1 or un in G. Without
loss of generality, let the center of the star K1,m be amalgamated with u1 in
G. For the graph H, let M = V (G). We claim that M is a uniform set of H.

Let S = {wj : 1 ≤ j ≤ m} be the set of pendant vertices in H. For all wj ∈ S

D(wj , ui) =

{
1, i = 1

D(wj , u1) +D(u1, ui), i ̸= 1,

Since fM (wj) = fM (wj′), V (G) is a uniform set of H. □

In view of Theorem 2.7, it is quite natural to seek for an analogous result
for the case of a disconnected graph. We shall now show that Theorem 2.7
can be extended to the case of disconnected graph in the following manner as
follows: Let S = {wj : 1 ≤ j ≤ m} be the set of isolated vertices, and Gi

be connected graphs of order ni, where 1 ≤ i ≤ k. Let ui ∈ V (Gi) be one of
the antipodal vertices of graph Gi and G be the graph obtained by making
ui ∈ V (Gi) and wj adjacent for all i and j. Then by using arguments similar
to that of Theorem 2.7 the following result can be established.

Theorem 2.8. If G is a disconnected graph with k components, then V (G)

is a uniform set of some graph.

Remark 2.9. For the embedding scheme proposed in Theorem 2.7, if G ∼= K2

or P3, then G is neither a minimum nor a minimal uniform set of H.

Even before we attempt to recognize the graphs which are minimum or
minimal uniform sets of some graphs, the existence of such a class of graphs
has to be shown. Our first result in the next section demonstrates a class of
graphs which are minimum uniform sets of some graphs.

3. New Results on Uniform Numbers

In this section we investigate the newly introduced graph parameter, uniform
number, ς(G). To begin with, we prove the following result.
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Theorem 3.1. For every positive integer t > 3, there exists a graph H such
that ς(H) = t.

Proof. For m ≥ t ≥ 3, let H be a graph obtained by amalgamating the center
of a star K1,m with any vertex of a complete graph Kt. Let V (Kt) = {ui : 1 ≤
i ≤ t} and, the center of a star K1,m be amalgamated with u1 in Kt. We claim
that M = V (Kt) is a uniform set of H. Let S = {wj : 1 ≤ j ≤ m} denote the
set of pendant vertices in H. Since for all wj ∈ S and ui ∈ M

D(wj , ui) =

{
1, i = 1

t, i ̸= 1,

fM (wj) = {1, t} for all wj ∈ S. Hence, M is a uniform set of H. We shall now
show that M is minimum too.

Suppose not, then there exists a uniform set M ′ of H such that |M ′| <

|M | = t. And, we have the following exhaustive cases: either M ′ ⊆ M c or
M ′ ⊆ M or M ′ ∩M ̸= ∅ and M ′ ∩M c ̸= ∅.

Let M ′ ⊆ M c. Since |M ′| < t ≤ m, there exists at least one element in M c,

say w1, such that w1 /∈ M ′, hence

fM ′(w1) = {D(w1, wj) : 2 ≤ j ≤ m} = {2}.

Also, for u1 ∈ M,

fM ′(u1) = {D(u1, wj) : 1 ≤ j ≤ m} = {1}.

Consequently, fM ′(u1) ̸= fM ′(w1). A contradiction to our assumption that M ′

is a uniform set of H, hence M ′ ⊈M c.

So, let M ′ ⊆ M. Since |M ′| < t, there exists at least one uk ∈ M such that
uk /∈ M ′, hence

fM ′(uk) = {D(uk, ui) : 1 ≤ i ̸= k ≤ t} = {t− 1}.

Also, for all wj ∈ M c,

fM ′(wj) = {D(wj , ui)} = {1, t}.

Since fM ′(uk) ̸= fM ′(wj), a contradiction to our assumption that M ′ is a
uniform set of H. Hence, M ′ ⊈M.

Finally, let M ′ ∩M ̸= ∅ and M ′ ∩M c ̸= ∅. In this case M ′ contains some
but not all elements from M and some but not all elements from M c. Since
|M ′| < t ≤ m, there exists at least one vertex ui′ ∈ M such that ui′ /∈ M ′ and
at least one vertex wj′ ∈ M c such that wj′ /∈ M ′. Thus we have

fM ′(ui′) =

{
{t− 1, t}, i′ ̸= 1

{t− 1, 1}, i′ = 1
and

fM ′(wj′) = {t, 2}.

Hence, fM ′(ui′) ̸= fM ′(wj′). Yet another contradiction to our assumption that
M ′ is a uniform set of H. Hence, ς(H) = t ≥ 3. □
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The embedding scheme proposed in Theorem 3.1 asserts the existence of
class of graph which are minimum uniform set of some graph. With the pre-
ceding Theorem 3.1 one may ponder “Does there exists a graph G for which
ς(G) = 1 or 2?” We settle this question in affirmative and also provide a new
characterization of Hamiltonian connected graphs.

In 1963, Ore [16] defined a graph G to be Hamilton-connected if it has a
spanning path for all pairs of vertices x and y in G. Examples of Hamilton-
connected graphs include Kn × Pm, antiprism graphs, complete graphs Kn,

Möbius ladders, prism graphs of odd order, wheel graphs, the truncated prism
graph, truncated cubical graph, truncated tetrahedral graph, Grötzsch graph,
Frucht graph, and Hoffman-Singleton graph.

Theorem 3.2. A graph G of order n ≥ 3 is Hamiltonian connected if and
only if every vertex of G is a uniform set of G.

Proof. Let V (G) = {vi : 1 ≤ i ≤ n} be the vertex set of a Hamiltonian
connected graph G. Since for any pair of vertices vi, vj ∈ V (G) there exists a
spanning path between them,

D(vi, vj) = n− 1.

The set M = {vk} is a uniform set of G, since for all vi different from vk in G

fM (vi) = {n− 1}.

The choice of vk ∈ V (G) was arbitrary, hence every vertex of G is a uniform
set of G and ς(G) = 1.

To see that the converse is also true, let G be a graph in which every vertex
is a uniform set. In view of Proposition 2.1, deg(u) ≥ 2 for all u ∈ V (G). We
need to show that G is Hamiltonian connected.

Suppose not, then there exist at least one pair of vertices, say, x, y ∈ V (G)

such that there is no spanning path P (x, y) in G and therefore D(x, y) = r <

n − 1. Let the vertices of P (x, y) be given x = v1, v2, v3, . . . , vr+1 = y. Hence,
V (G) is partitioned into two classes viz, V1 and V2 such that V1 contains all the
vertices of the detour path P (x, y) and V2 containing all the vertices of G which
are avoided by P (x, y) in G. Since the length of P (x, y) is r, |V2| = n− 1− r.

Let V2 = {w1, w2, w3, . . . , wn−1−r}. Since G is connected and deg(u) ≥ 2 for
all u ∈ V (G), there exists at least one vertex in each partition, say vj , wi, such
that vjwi ∈ E(G). Since D(x, y) = r and every vertex in G is a uniform set,
in particular {x} is also a uniform set of G and therefore D(x, z) = r for all
z ∈ V (G). Let us consider the detour path P (x, vj) for which we have the
following possibilities:

Case 1: If P (x, vj) avoids all the vertices of V1, then such a path must be of
the form x,wt, wt+1, . . . , wt−2−r, vj , where wt, wt+1, . . . , wt−2−r ∈ V2 such that
P (x, vj) of length r. Hence, D(x, y) = D(x, vj)+D(vj , y) ≥ r+1 a contradiction
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to the fact that D(x, y) = r. Thus, there exists no detour P (x, vj) avoiding all
the vertices of V1.

Case 2: The detour path P (x, vj) avoids all the vertices of V2. If P (x, vj)

avoids all the vertices of V2, then there exists a relabeling of the vertices of
V1 such that x = u1, u2, u3, . . . , ur+1 = vj . Also, vjwi ∈ E(G) and therefore
D(x,wi) = D(x, vj) +D(vj , wi) ≥ r+ 1, again a contradiction to the fact that
D(x,wi) = r. Hence there exists no detour P (x, vj) avoiding all the vertices of
V2.

Case 3: The detour path between x and vj avoids some, but not all the
vertices of V1 and V2. Let P1(x, vj) be such a path of length r in G. In such a
case either D(x, vj−1) ≥ r + 1 or D(x, vj+1) ≥ r + 1 as vj−1vj , vjvj+1 ∈ E(G).

In either of the case, we have a contradiction to the fact that D(x, z) = r for
all z ∈ V (G).

Which implies that there exists no such partition V1 and V2 of V (G). Hence,
r = n− 1, and the proof is seen to be complete. □

Hamilton connected graphs provides us with an instance where every single-
ton subset of the vertex set is minimum uniform set. We propose the following
problem.

Problem 3.3. Characterize the graphs for which every k-subset of the vertex
set is a minimum uniform set.

Theorem 3.2 settles the Problem 3.3 for k = 1. Hamiltonian connectedness
of graph G is a necessary condition for ς(G) = 1, and the converse is not true,
as can be seen from the following results.

Theorem 3.4. If T is a tree of order n ≥ 3, then ς(T ) = 1 if and only if
T ∼= K1,n−1.

Proof. Let u be the center and S = {vi : 1 ≤ i ≤ n− 1} be the set of pendent
vertices of K1,n−1. Since D(vi, u) = 1 for all vi ∈ S, the set M = {u} is a
uniform set of K1,n−1. Consequently, ς(K1,n−1) = 1 for n ≥ 3.

Conversely, let T be a tree of order n such that ς(T ) = 1. Let V (T ) = {vi :
1 ≤ i ≤ n} be the vertex set of T. Since ς(T ) = 1, any uniform set must
be of the form M = {vk} for some vk ∈ V (T ). In view of Proposition 2.1,
deg(vk) ̸= 1. To show that T is a star it is enough to show that every vertex in
T different from vk is of degree one. Suppose not, then there exist at least one
pair of vertices vj , vj+1 ∈ V (T ) such that deg(vj) ≥ 2 and vjvj+1 ∈ E(T ). In
view of the fact that any two vertices of a tree is connected by a unique path,
fM (vj) ̸= fM (vj+1). A contradiction to the fact that M ′ is a uniform set of
T. Hence, there exists no such vertex vj ∈ V (T ) such that deg(vj) ≥ 2 with
vj+1 ∈ V (T ) as the successor of vj in T. Hence, T ∼= K1,n−1. □

Theorem 3.5. If G = Pn +K1 where n ≥ 3, then ς(G) = 1.



Uniform number of a graph 87

Proof. Let {u1, u2, u3, . . . , un} be the vertices of Pn taken in a sequential order
and v be the vertex of K1. Since D(v, u1) = n and D(uj , u1) = n for all 2 ≤ j ≤
n, the set M = {u1} is seen to be a uniform set of G as fM (v) = {n} = fM (uj).

Hence, ς(G) = 1. □

Remark 3.6. In view of the geometric symmetry of Pn+K1 about the vertex
v, the set {un} is also a minimum uniform set of Pn +K1.

The friendship graphs [8] Fn are graphs obtained by vertex amalgamation of
n-copies of K3. Figure 2 illustrates F4. K3 being a complete graph is Hamilton
connected. We extend the notion of friendship graph to generalized friendship
graphs by replacing K3 by a Hamilton connected graph of order m. Let H be a
Hamilton connected graph of order m and u be a fixed vertex of H. Generalized
friendship graph denoted as F ∗

n is a graph obtained by amalgamating the vertex
u in n-copies of H.

u u11

u12

u21

u22

u31

u32

u41

u42

Figure 2. Friendship graph, F4

Theorem 3.7. If F ∗
n is a generalized friendship graph of order n ≥ 2, then

ς(F ∗
n) = 1.

Proof. Let u ∈ V (H) be a fixed vertex of a Hamilton connected graph H of
order m and F ∗

n be a graph obtained by amalgamating the vertex u in n-copies
of H. Let V (F ∗

n) = V1

∪
V2, where V1 = {u} and V2 = {uij : 1 ≤ i ≤ n, 1 ≤ j ≤

m − 1}. Since D(u, uij) = m − 1 for all 1 ≤ i ≤ n and 1 ≤ j ≤ m − 1, the set
M = {u} is a uniform set of F ∗

n . Consequently, ς(F ∗
n) = 1. □

Corollary 3.8. If Fn is a friendship graph of order n ≥ 2, then ς(Fn) = 1.

Having discussed the graphs for which ς(G) = 1, we now exhibit some classes
of graphs for which ς(G) = 2.

A bipartite graph G with partitions V1 and V2 is Hamilton-laceable [19], if
for any u ∈ V1 and v ∈ V2, there is a Hamilton path whose terminal vertices
are u and v. The notion of Hamilton-laceable graphs was extended as strongly
Hamiltonian-laceable graphs [12]. A bipartite graph G of order n with its
partite sets of equal size is said to be strongly Hamiltonian-laceable if there is
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a Hamiltonian path between every two vertices that belong to different partite
sets and there is a path of (maximal) length n− 2 between every two vertices
that belong to the same partite set.

Theorem 3.9. If G is a strongly Hamiltonian-laceable graph of order n ≥ 4,

then ς(G) = 2.

Proof. If G is a strongly Hamiltonian-laceable graph, then G is a bipartite
graph with partitions of equal size. Let V1 = {ui : 1 ≤ i ≤ m} and V2 = {vi :
1 ≤ i ≤ m} be the partitions of G. Without loss of generality, let M = {v1, u1}.
We claim that M is a uniform set of G. Since there is a Hamiltonian path
between every two vertices that belongs to different partite sets and there is
a path of length 2m − 2 between every two vertices that belongs to the same
partite set in G, for all ui, vj ∈ V (G) such that ui, vj /∈ M

fM (ui) = fM (vj) = {2m− 1, 2m− 2}.

Next to see that M is a minimum uniform set, assume to the contrary. Then
there exists a uniform set M ′ of G such that |M ′| < 2. Let M ′ = {x}, where
x ∈ V1 or x ∈ V2. Without loss of generality, let x ∈ V1, then for all ui ∈ V1

different from x

fM ′(ui) = {D(ui, x)} = {2m− 2}.

Also, for all vj ∈ V2

fM ′(vj) = {D(vj , x)} = {2m− 1}.

A contradiction to our assumption that M ′ is a uniform set of G. Hence, ς(G) =

2. □

In view of the preceding theorem and the fact that, n-dimensional hypercube
is strongly Hamiltonian-laceable [13] the following is immediate consequence.

Corollary 3.10. If Qn is a n-dimensional hypercube, then ς(Qn) = 2.

The converse of the statement in the Theorem 3.9 is not true as can be seen
from our next result which characterizes trees for which ς(G) = 2.

For arbitrary integers r ≥ 2 and s ≥ 2, a bistar [8] Br,s is a tree of diameter
three and is obtained by taking two stars K1,r−1 and K1,s−1 on disjoint ver-
tex sets and then by making their centers u and v adjacent to each other by
introducing a new edge uv.

Theorem 3.11. If T is a tree of order n ≥ 4, then ς(T ) = 2 if and only if
T ∼= Br,s.

Proof. Let {u, v} be the center of the bistar Br,s. Let S1 = {ui : 1 ≤ i ≤ r}
and S2 = {vj : 1 ≤ j ≤ s} be the set of pendant vertices adjacent to u and
v respectively. Since D(ui, u) = 1 = D(vj , v) and D(ui, v) = 2 = D(vj , u),
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the set M = {u, v} is a uniform set of Br,s. We claim that M is a minimum
uniform set.

Suppose not, then there exists a uniform set M ′ of Br,s such that |M ′| <
|M | = 2. Let M ′ = {x}, in view of proposition 2.1, deg(x) ̸= 1. Since u and v

are the only vertices in Br,s for which the degree is not equal to 1, without loss
of generality let x = u. Then fM ′(v) ̸= fM ′(vj).

Again a contradiction to the assumption that M ′ is a uniform set of Br,s.

Hence M = {u, v} is a minimal uniform set of Br,s.

Conversely, let T be a tree of order n with ς(T ) = 2. We need to show
T ∼= Br,s. To show that T ∼= Br,s it is enough to show that diam(T ) = 3.

Suppose not, then either diam(T ) < 3 or diam(T ) > 3. In view of Theorem 3.4,
diam(T ) ≮ 3. Let diam(T ) > 3. If T has exactly two pendant vertices, then
r = 1 and s = 1 and P4

∼= B1,1, hence by Proposition 2.3 the result is seen to
be true. So, let T contains at least three pendant vertices. Since diam(T ) > 3

and T contains at least three pendant vertices, n ≥ 5. Let M = {x, y} be a
minimum uniform set of T.

Case 1: If deg(x) = 1 or deg(y) = 1. Without loss of generality, let deg(x) =
1, then deg(y) ≥ 2 by Proposition 2.1.

Subcase 1.a: When xy ∈ E(T ). Since diam(T ) > 3 and n ≥ 5, there exist
at least one pair of vertices w, z ∈ V (T ) such that yw,wz ∈ E(T ). In such a
case,

fM (w) = {D(w, x), D(w, y)}, and
fM (z) = {D(z, x), D(z, y)} = {D(z, w) +D(w, x), D(z, y) +D(w, y)}

= {D(w, x) + 1, D(w, y) + 1}.

But D(w, x), D(w, y) ≥ 1, hence fM (w) ̸= fM (z). A contradiction to the as-
sumption that M is a uniform set of T. Hence, xy /∈ E(T ).

Subcase 1.b: When xy /∈ E(T ). Since diam(T ) > 3 and n ≥ 5, there exits
at least one vertex w ∈ V (T ) such that xw, yw ∈ E(T ). For w ∈ V (T ),

fM (w) = {D(w, x), D(w, y)} = {1}.

Since deg(y) ≥ 2, there exists a z ∈ V (T ) such that yz ∈ E(T ) and

fM (z) = {D(z, x), D(z, y)} = {D(z, w) +D(w, x), D(z, y)} = {D(z, w) + 1, 1}.

But D(z, w) ≥ 1, hence fM (w) ̸= fM (z). Again a contradiction to the assump-
tion that M is a uniform set of T. Hence, deg(x) ̸= 1. Similarly, deg(y) ̸= 1.

Case 2: When deg(x) ̸= 1 and deg(y) ̸= 1.

Let a1, a2, . . . , ai, . . . , x, . . . , w, . . . y, . . . , aj , . . . ar−1, ar be any path in T con-
taining x and y as its internal vertices such that ai and aj are not the pendant
vertices. In such a case,

fM (ai) = {D(ai, x), D(ai, y)}, and
fM (a1) = {D(a1, x), D(a1, y)} = {D(a1, ai) +D(ai, x), D(a1, ai) +D(ai, y)}.
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Since a1 ̸= ai, D(a1, ai) ≥ 1. Hence fM (ai) ̸= fM (a1), a contradiction to the
assumption that M is a uniform set of T. Hence there exists no ai ∈ V (T ) lying
between a1 and x in the a1 − ar path in T. With a similar argument it can be
proved that there exists no aj ∈ V (T ) lying between y and ar−1 in the a1 − ar
path in T. Hence, a1 − ar path is of the form a1, x, . . . , w, . . . y, ar. In such a
case,

fM (a1) = {D(a1, x), D(a1, y)} = {D(a1, x), D(a1, x) +D(x,w) +D(w, y)}
= {1, 1 +D(x,w) +D(w, y)}, and

fM (w) = {D(x,w), D(w, y)}.

Since D(x,w), D(w, y) ≥ 1, fM (a1) ̸= fM (w). Again a contradiction to the
assumption that M is a uniform set of T. Hence there exists no w ∈ V (T ) lying
between x and y in the a1 − ar path in T. Thus, xy ∈ E(T ) and a1 − ar path
is of the form a1, x, y, ar. Hence, diam(T ) = 3. □

We now exhibit a few non-isomorphic classes of cyclic graphs for which
ς(G) = 2.

Theorem 3.12. If W ∗
n is a graph obtained by attaching a pendant edge to

the central vertex of a wheel Wn, then ς(W ∗
n) = 2.

Proof. Let u be the central vertex, uv be the pendant edge and R = {wi : 1 ≤
i ≤ n} be the vertices on the rim of W ∗

n . Since D(wi, u) = n and D(wi, v) = n+1

for all wi ∈ R, the set M = {u, v} is a uniform set of W ∗
n . We claim that M is

minimum too. For if possible let M ′ be a uniform set of W ∗
n such that |M ′| = 1.

The vertex v being a pendant vertex in W ∗
n , in view of proposition 2.1, v /∈ M ′.

So, either M ′ = {u} or M ′ = {wj} for some j. Let M ′ = {u}. Since D(wi, u) =

n for all wi ∈ R, and D(v, u) = 1, fM ′(wi) ̸= fM ′(v). A contradiction to
the assumption that M ′ is a uniform set of W ∗

n , hence M ′ ̸= {u}. Finally, let
M ′ = {wj} for some j. Since D(u,wi) = n and D(v, wi) = 1 for all wi ∈ R,

fM ′(u) ̸= fM ′(v). Again a contradiction to the assumption that M ′ is a uniform
set of W ∗

n , hence M ′ ̸= {wj}. Hence, M is a minimum uniform set of W ∗
n . □

The n-Barbell graph [10] is the simple graph obtained by connecting two
copies of a complete graph Kn by a bridge. Kn being a hamiltonian connected
graph, a n-Barbell graph contains exactly two Hamiltonian connected graph,
of order n as its induced subgraphs. We extend the notion of the n-Barbell
graph by replacing Kn by a Hamilton connected graph of order n.

Theorem 3.13. If G is a n-Barbell graph obtained by connecting two copies
of a Hamiltonian connected graph of order n by a bridge, then ς(G) = 2.

Proof. Let H be a Hamiltonian connected graph of order n and G be the graph
obtained as in the statement of the theorem.
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Let H1 and H2 be the two copies of H in G such that V (H1) = {ui : 1 ≤
i ≤ n} and V (H2) = {vi : 1 ≤ i ≤ n}, and unvn ∈ E(G) be the bridge in G.

For any two vertices x, y ∈ V (G) we have

D(vi, vj) = n− 1,

D(ui, uj) = n− 1,

D(vn, ui) = n, i ̸= n,

D(un, vi) = n, i ̸= n,

D(ui, vj) =

{
2n− 1, 1 ≤ i, j ≤ n− 1;
1, i = j = n.

The set M = {un, vn} is a uniform set of G as

fM (ui) = {D(ui, un) : 1 ≤ i ≤ n− 1}
∪

{D(ui, vn) : 1 ≤ i ≤ n}

= {n− 1}
∪

{2n− 1} = {n− 1, 2n− 1}, and

fM (vi) = {D(vi, un) : 1 ≤ i ≤ n}
∪

{D(vi, vn) : 1 ≤ i ≤ n− 1}

= {2n− 1}
∪

{n− 1} = {n− 1, 2n− 1}.

And, therefore fM (ui) = fM (vi) for all 1 ≤ i ≤ n− 1. We now claim that M is
minimum too. Suppose not, then there exists a uniform set M ′ of G such that
|M ′| = 1. In such a case either M ′ = {ul} for some ul ∈ V (H1) or M ′ = {vm}
for some vm ∈ V (H2) where 1 ≤ l,m ≤ n. In view of the geometric symmetry
of G about the edge unvn, it is enough to consider the case M ′ = {ul} for some
ul ∈ V (H1).

Case 1: If l ̸= n, then

fM ′(ui) = {D(ui, ul) : i ̸= l} = {n− 1}, and
fM ′(vn) = {D(vn, ul)} = {n}.

A contradiction to the assumption that M ′ is a uniform set of G.

Case 2: If l = n, then M ′ = {un}

fM ′(ui) = {D(ui, un)} = {n− 1}, and
fM ′(vn) = {D(vn, un)} = {1}.

Again a contradiction to the assumption that M ′ is a uniform set of G.

In either of the cases, we arrive at a contradiction to the assumption that
M ′ is a uniform set of G, hence the proof. □

The next result determines the uniform number of complete bipartite graph
Km,n.

Theorem 3.14. If Km,n is a complete bipartite graph with m,n ≥ 2, then

ς(Km,n) =

{
2, if m = n

min{m,n}, if m ̸= n
.
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Proof. Let the two color classes of Km,n be given by V1 = {vi : 1 ≤ i ≤ m}
and V2 = {uj : 1 ≤ j ≤ n}. When m = n, in view of Theorem 3.9 we have
ς(Km,n) = 2. So, let m ̸= n. Since the circumference of Km,n is equal to
2min{m,n}, for any adjacent pair of vertices u, v in Km,n we have D(u, v) =

2min{m,n} − 1. If m = min{m,n}, then V1 is seen to be a uniform set of
Km,n. To see that M = V1 is the minimum uniform set, assume to the contrary.
Then there exists a uniform set M ′ of Km,n, such that |M ′| < |M |. For the
sets M ′,M ⊆ V (Km,n) we have the following exhaustive possibilities: either
M ′ ⊆ M c or M ′ ⊂ M or M ′ ∩M ̸= ∅ and M ′ ∩M c ̸= ∅.
Let M ′ ⊆ M c. Since m = min{m,n} and |M ′| < |M |, M ′ ⊂ M c = V2 and,
therefore there exists at least one uj , say un such that un /∈ M ′. Hence, M ′ ⊆
M −{un}, and fM ′(un) = {2m− 2}. Also, for all vi ∈ V1, fM ′(vi) = {2m− 1}.
Clearly, fM ′(vi) ̸= fM ′(un). A contradiction to the assumption that M ′ is a
uniform set of Km,n and therefore M ′ ⊈M c.

So, let M ′ ⊂ M. There exists at least one vertex, say v1 ∈ V1, such that
v1 /∈ M ′. Hence, M ′ ⊆ M − {v1} and fM ′(v1) = {2m − 2}. Also, for all
uj ∈ V2, fM ′(uj) = {2m − 1}. Clearly, fM ′(v1) ̸= fM ′(uj). A contradiction
to the assumption that M ′ is a uniform set of Km,n, hence our assumption
M ′ ⊂ M is not true.
Finally, let M ′ ∩M ̸= ∅ and M ′ ∩M c ̸= ∅. In this case M ′ contains some but
not all elements from M and some but not all elements from M c. Therefore,
there exists a vi′ ∈ M such that vi′ /∈ M ′ and there exists at least one uj′ ∈ M c

such that uj′ ∈ M ′. For such an M ′, we have

fM ′(vi′) = {2m− 2, 2m− 1}, and
fM ′(uj′) = {2m− 1, 2m}.

Clearly, fM ′(v1) ̸= fM ′(uj). Yet another contradiction to the assumption that
M ′ is a uniform set of Km,n. Hence, the proof is seen to be complete. □

In view of the Theorem 3.2 and 3.4, the lower bound prescribed for ς(G)

in Proposition 2.5 is seen to be attained by infinite family of non-isomorphic
graphs.

Our next result establishes the sharpness of the upper bound prescribed for
ς(G).

Theorem 3.15. If Pn is a path of order n ≥ 3, then ς(Pn) = n− 2.

Proof. Let u1, u2, u3, . . . , un be the vertices of Pn taken in a sequential order.
For n = 3 it is easy to see that the set M = {u3} and for n = 4 the sets M =

{u2, u3} or {u1, u4} are the minimum uniform sets of P3 and P4 respectively.
Let n ≥ 4. Since for any vertex ui, uj ∈ V (Pn)

D(ui, uj) =

{
i− j, i > j,

j − i, i < j,
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the set M = {ui : 2 ≤ i ≤ n− 1} is seen to be a uniform set of Pn as

fM (u1) = fM (un) = {i : 1 ≤ i ≤ n− 2}.

We now claim that M is minimum too. Suppose not, then there exists a uni-
form set M ′ of Pn such that |M ′| < |M |. We have the following possibilities:
either M ′ ∩M = ∅ or M ′ ∩M ̸= ∅.
If M ′ ∩M = ∅, then M ′ ⊆ M c = {u1, un}. The vertices u1 and u2 being pen-
dant vertices, in view of proposition 2.1 M ′ ⊊M. Hence, M ′ = {u1, un}. Since
any two vertices of a tree is connected by a unique path, for any pair of adjacent
vertices uj , uj+1 ∈ V (Pn) we have fM ′(uj) ̸= fM ′(uj+1). A contradiction to
our assumption that M ′ is a uniform set of Pn, hence M ′ ∩M ̸= ∅.
If M ′ ∩M ̸= ∅, then either M ′ ∩M c = ∅ or M ′ ∩M c ̸= ∅.

Case 1: Let M ′ ∩M ̸= ∅ and M ′ ∩M c = ∅. Since |M ′| < |M | and path
Pn is symmetrical about it’s center, for r ≤ ⌈n

2 ⌉ there exists ur ∈ M such
that ur /∈ M ′. Hence, M ′ = {u2, u3, . . . , ur−1, ur+1, . . . , un−1}. Note that for
u1, ur /∈ M ′, max{fM ′(u1)} = n − 2 and max{fM ′(ur)} = n − r − 1. Also,
r ≥ 2 which implies that n − r − 1 < n − 2, hence n − 2 /∈ fM ′(ur) and
fM ′(u1) ̸= fM ′(ur). A contradiction to our assumption that M ′ is a uniform
set of Pn, hence M ′ ∩M ̸= ∅ and M ′ ∩M c = ∅ is not true.

Case 2: Let M ′ ∩M ̸= ∅ and M ′ ∩M c ̸= ∅. Since |M ′| ≤ n − 3, there
exist at least two vertices, say, ur, us ∈ M such that ur, us /∈ M ′ and either
u1 ∈ M ′ or un ∈ M ′. Without loss of generality, let u1 ∈ M ′, and M ′ =

{u1, u2, u3, . . . , ur−2, ur−3, . . . , us−2, us−3, . . . , un−1}. For u1, we have

fM ′(u1) = {D(u1, uj) : 2 ≤ i ̸= r, s ≤ n}
= {1, 2, 3, . . . , r − 2, r − 3, . . . , s− 2, s− 3, . . . , n− 1},

and using arguments similar to that of the preceding case, it can be seen that
for r or s ̸= 1 or n, n−1 /∈ fM ′(ur). Hence, fM ′(u1) ̸= fM ′(ur), again a contra-
diction to our assumption that M ′ is a uniform set of Pn, hence M ′ ∩M ̸= ∅
and M ′ ∩M c ̸= ∅ is also not true. The proof is seen to be complete. □

So far we have seen the graphs for which ς(G) is either close to the lower
bound or close to the upper bound prescribed on ς(G). We now exhibit a class
of graphs for which ς(G) lies almost in the middle of the prescribed bounds.

The next class of the graphs are obtained from a wheel graph by the subdi-
vision of its edges. A gear graph [8], Gn, is obtained by subdividing the edges
on the rim of a wheel graph Wn.

Theorem 3.16. If Gn is a gear graph where n ≥ 3, then ς(Gn) = n.

Proof. Let u be the central vertex, {vi : 1 ≤ i ≤ n} be the vertices on the
rim and {wi : 1 ≤ i ≤ n} be the vertices obtained by the subdivision of edges
vivi+1 on the rim of Wn so that the resultant graph is a gear graph Gn. Let D
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be the detour distance matrix of Gn, and for 1 ≤ i, j ≤ n

D =



u vi vj wi wj

u 0 2n− 1 2n− 1 2n 2n

vi 2n− 1 0 2n− 2 2n− 1 2n− 1

vj 2n− 1 2n− 2 0 2n− 1 2n− 1

wi 2n 2n− 1 2n− 1 0 2n

wj 2n 2n− 1 2n− 1 2n 0


The set M = {vi : 1 ≤ i ≤ n} is a uniform set of Gn, since for all wj ∈ V (Gn)

we have fM (wj) = {2n− 1} = fM (u).

We claim that M is minimum. Suppose not, then there exists a set M ′ as
a uniform set of Gn such that |M ′| < |M |. We have the following exhaustive
cases: either M ′ ⊆ M c or M ′ ⊆ M or M ′ ∩M ̸= ∅ and M ′ ∩M c ̸= ∅.

Case 1: Let M ′ ⊆ M c. In view of our assumption that |M ′| < |M | = n it
follows that M ′ ⊂ M c. Since |M ′| < n and |M c| = n + 1, there exist at least
two elements α, β ∈ M c such that α, β /∈ M ′. Either α = u and β = wk for
some k ≤ n or α = wl and β = wm for some l,m ≤ n. In either of the cases,
fM ′(wk) ̸= fM ′(vi) for all vi ∈ V (Gn). A contradiction to the assumption that
M ′ is a uniform set of Gn. Hence, M ′ ⊈M c.

Case 2: Let M ′ ⊆ M. Since |M ′| < |M |, M ′ ⊂ M. Therefore M ′ = M−{vt}
for some t ≤ n. Since fM ′(vt) ̸= fM ′(u), contrary to our assumption that M ′

is a uniform set of Gn. Hence M ′ ⊈M.

Case 3: Finally, if M ′ ∩M ̸= ∅ and M ′ ∩M c ̸= ∅, then M ′ = X∪Y, where
X ⊂ M and Y ⊂ M c. There exists vk, γ ∈ V (Gn) such that vk /∈ X and γ ∈ Y.

We now have the following possibilities:
If γ = u and M ′ = {u}

∪
{vi : 1 ≤ i ̸= k ≤ n}, then

fM ′(vk) = {D(vk, u)}
∪

{D(vk, vi) : 1 ≤ i ̸= k ≤ n)} = {2n− 1, 2n− 2}.

And, for all wi ∈ V (Gn)

fM ′(wi) = {D(wi, u)}
∪

{D(wi, vi) : 1 ≤ i ̸= k ≤ n} = {2n− 1, 2n}.

Contradicting the assumption that M ′ is a uniform set of Gn, hence γ ̸= {u}.
So, let γ = wj for some j say j = 1 and M ′ = {w1}

∪
{vi : 1 ≤ i ̸= k ≤ n}.

Then

fM ′(u) = {D(u,w1)}
∪

{D(u, vi) : 1 ≤ i ̸= k ≤ n} = {2n− 1, 2n}, and

fM ′(vk) = {D(vk, w1)}
∪

{D(vk, vi) : 1 ≤ i ̸= k ≤ n)} = {2n− 1, 2n− 2}.

Again a contradicting our assumption that M ′ is a uniform set of Gn, hence
α ̸= {wj}.
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Finally, let M ′ = {u,w1}
∪
{vi : 1 ≤ i ̸= p, q, r ≤ n}, then for all wj different

from w1 in V (Gn)

fM ′(wj) = {D(wj , u)}
∪

{D(wj , w1)}
∪

{D(wj , vi) : 1 ≤ i ̸= p, q, r ≤ n}

= {2n− 1, 2n}, and
fM ′(vp) = {D(u, vp)}

∪
{D(w1, vp)}

∪
{D(vp, vi) : 1 ≤ i ̸= p, q, r ≤ n}}

= {2n− 1, 2n− 2}.

Yet another contradiction to the assumption that M ′ is a uniform set of Gn,

hence M ′ ̸= {u,w1}
∪
{vi : 1 ≤ i ̸= p, q, r ≤ n}.

Since for all possibilities of |M ′| < |M |, we have a contradiction to our basic
assumption that M ′ is a uniform set of Gn, M is seen to be a minimum uniform
set of Gn. □

Let G1 and G2 be two graphs of order n1 and n2, respectively. The corona
product G1 ◦ G2 is defined as the graph obtained from G1 and G2 by taking
one copy of G1 and n1 copies of G2 and joining by an edge each vertex from
the ith-copy of G2 with the ith-vertex of G1.

Theorem 3.17. If G is a graph obtained as the corona product of Hamilton
connected graph H of order n and K1, then ς(G) = n.

Proof. Let G ∼= H ◦ K1, where H is a Hamilton connected graph of order n.

Let {ui : 1 ≤ i ≤ n} be the vertices of H and {vi : 1 ≤ i ≤ n} be the n−copies
of K1 adjacent to ui in G. For any pair of vertices x, y ∈ V (G), we have

D(ui, uj) = n− 1,

D(ui, vj) =

{
1, i = j

n, i ̸= j,

D(vi, vj) = n+ 1.

The set M = {ui : 1 ≤ i ≤ n} is a uniform set of G, since fM (vj) = {1, n} for
all vj ∈ V (G). We now claim that M is minimum too. Suppose not then there
exists a uniform set M ′ of G such that |M ′| < |M |. Since |M c| = |M | = n

and |M ′| < |M |, we have the following exhaustive cases: either M ′ ⊂ M c or
M ′ ⊂ M or M ′ ∩M ≠ ∅ and M ′ ∩M c ̸= ∅.

Case 1: Let M ′ ⊂ M c, then for some k ≤ n there exists vk ∈ M c such that
M ′ = M c − {vk}. Since

fM ′(vk) = {D(vk, vj) : 1 ≤ j ̸= k ≤ n} = {n+ 1}, and
fM ′(u1) = {D(u1, vj) : 1 ≤ j ̸= k ≤ n} = {n},

a contradiction to the assumption that M ′ is a uniform set of G. Hence our
assumption that M ′ ⊂ M c is false.
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Case 2: Let M ′ ⊂ M, then for some l ≤ n there exists at least one ul ∈ M

such that M ′ = M − {ul}. Since

fM ′(ul) = {D(ul, ui) : 1 ≤ i ̸= l ≤ n} = {n− 1}, and
fM ′(v1) = {D(v1, ui) : 1 ≤ i ̸= l ≤ n} = {n},

contradiction to the assumption that M ′ is a uniform set of G. Hence our
assumption that M ′ ⊂ M is also false.

Case 3: Finally, let M ′ ∩M ̸= ∅ and M ′ ∩M c ̸= ∅. Then there exists at
least one ur ∈ M such that ur /∈ M ′ and vs ∈ M c such that vs ∈ M ′ for which,
we have M ′ = {vs}

∪
{ui : 1 ≤ i ̸= r ≤ n}.

fM ′(ur) = {D(ur, ui) : 1 ≤ i ̸= r ≤ n}
∪

{D(ur, vs)} = {n− 1, n}, and

fM ′(v1) = {D(v1, ui) : 1 ≤ i ̸= r ≤ n}
∪

{D(v1, vs)} = {n, n+ 1}.

A contradiction to the assumption that M ′ is a uniform set of G. Hence the
proof. □

4. Conclusion and Scope for Further Research

In this article we have introduced the notion of uniform number of a graph
ς(G). We have prescribed the bounds of ς(G) and established the sharpness of
the prescribed bounds. We have also determined the uniform numbers of some
standard classes of graphs. Although we have determined the uniform numbers
of some classes of cyclic graphs, the determination of uniform number of cycles
Cn remains an open problem. In the present article we have also initiated the
determination of uniform numbers of graph products. A general investigation
of uniform numbers of graph products is yet to be done. Further there are
other open areas of investigation pertaining to the uniform number of graphs
as discussed below.

Graphs G1, G2 and P5 of Fig. 1 revisited: Recall that for the graph G1 in
Fig. 1, M1 = {1, 2, 3} and M2 = {1, 4, 5, 6, 7} are two uniform sets of different
cardinalities. And, for the graph G2 in Fig. 1, M3 = {1, 2, 3} and M4 = {4, 5, 6}
are two uniform sets of same cardinality. Finally, M = {2, 3, 4} is the only
uniform set for the graph P5 in Fig. 1.

From the preceding discussion it is evident that, a graph G may or may not
have a unique uniform set. In case it is having more than one uniform sets,
they may or may not have the same cardinalities. Hence the following problem
is yet to be investigated.

Problem 4.1. Characterize the graphs having unique uniform set.

At this juncture one may suspect that a uniform set of a graph is either the
center or the detour-center of the graph. The set M1 for graph G1 of Fig. 1
disproves any such intuition. However, there exists graphs for which a uniform
set is either the center or detour-center of the graph, as illustrated by the set
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M3 of graph G2 of Fig. 1. It must also be noted that a uniform set need not
be contained in the center or detour center of the graph, as can be seen for
the set M4 of G2 of Fig. 1. In general, a uniform set of a graph need not be
contained in a block of a connected graph which can be seen for the set M2 of
G1 in Fig. 1. The following problem is yet to be investigated.

Problem 4.2. Characterize the graphs for which every uniform set induces a
connected subgraph.

Further note that, M1 is both minimum and minimal uniform set, whereas
M2 is minimal but not a minimum uniform set of G1. The graph G1 suggests the
existence of graphs for which minimal uniform sets need not be a minimum.
It also indicates the possibility of the existence of graphs for which no two
minimal uniform sets are of the same cardinality. The graph G2 suggests the
existence of the graphs for which every minimal uniform set is also a minimum
uniform set. It also suggests the existence of graphs for which the complement
of a uniform set is also a uniform set and the existence of graphs for which the
uniform set partition the vertex set of the graph. Such an investigation is yet
to be done. We summarize the foregoing observations as follows.

Problem 4.3. Characterize the graphs for which all the uniform sets of the
same cardinality.

Problem 4.4. Characterize the graphs for which the uniform sets partitions
the vertex set of the graph.

Further, it is easy to see that the sets M1 and M2 are minimal dominating
sets and the set D = {2, 3} is the minimum dominating set of G1. It can also
be verified that D = {2, 3} is not a uniform set of G1. Hence, ς(G1) ̸= γ(G1).

Also, the sets M3 and M4 are minimum dominating sets of the graph G2.

Thus, ς(G2) = 3 = γ(G2). It follows from the above discussion that minimum
dominating set of a graph need to be a uniform set or vice-versa. Hence, it
becomes imperative to recognize the graphs for which a minimum uniform set
is also a minimum dominating set. Hence we propose the following problem.

Problem 4.5. Characterize the graphs for which ς(G) = γ(G).

Furthermore, the set M2 in G1 is a minimum uniform set as well as maximum
independent set. The same is true for the set M4 but not for M3 in G2. However,
the set M in P5 is not a maximum independent set. It follows from the above
discussion that a maximum independent set of a graph need not be a uniform
set or vice-versa. To recognize such graphs for which a minimum uniform set
is also a maximum independent set is open.

Problem 4.6. Characterize the graphs for which ς(G) = β(G).
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Last but not the least, K2 is the largest clique in G1 and ς(G1) = 3, hence
ω(G1) ̸= ς(G1). K3 is the largest clique in G2 and ⟨M3⟩ ∼= K3, hence ς(G2) =

ω(G2) = 3. As ⟨M4⟩ ≇ K3, it follows that it is not necessary for a minimum
uniform set to induce the maximum clique in a graph. K2 is the largest clique in
P5 and ⟨M⟩ ≇ K2, hence ς(P5) ̸= ω(P5). It would be interesting to investigate
the following problems.

Problem 4.7. Characterize the graphs for which ς(G) = ω(G).

Problem 4.8. Characterize the graphs for which the minimum uniform set
induces the maximal clique.

Finally, it is easy to see that 2 = χ(G1) ̸= ς(G1) = 3 and χ(G2) = 3 = ς(G2).

This observation raises the following problem.

Problem 4.9. Characterize the graphs for which χ(G) = ς(G).

The problem of determining domination number γ(G), clique number ω(G),

independence number β(G) and chromatic number χ(G) are known to be NP -
complete [7]. The problems raised in the foregoing paragraphs opens the flood-
gates to explore the unexplored notion of uniform number of a graph ς(G)

and its interaction with the well known graph theoretic parameters such as
γ(G), ω(G), β(G) and χ(G).
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